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Optical transmission through strong scattering
and highly polydisperse media
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Abstract. – We present near infrared total transmission measurements through samples of
randomly packed silicon powders. At different wavelengths we analyze in detail the scattering
properties and the effects of residual absorption. The lowest value of kls, where k is the wave
vector and ls is the scattering mean free path, is 3.2. We also observe that kls is nearly constant
over a wide wavelength range. This phenomenon is associated with the high polydispersity
of the particles. We use the energy density coherent potential approximation to explain our
measurements.

The analogy between the propagation of electron waves and classical waves has led to a
revival in the research of the transport of light in disordered scattering systems [1]. The
final goal of many of these studies has been to observe the optical analogue of Anderson
localization in electronic systems [2]. Anderson localization refers to an inhibition of the wave
propagation in disordered scattering systems due to interference. Localization is essentially a
wave phenomenon and it should hold for all kinds of waves i.e. electrons, electromagnetic and
acoustic waves [3]. For isotropic scatterers Anderson localization is established if kls ≤ 1, where
k is the wave vector in the medium and ls is the scattering mean free path, or the average
length that the wave propagates in between two elastic collisions. The transition between
extended and localized states occurs when kls ' 1. This is known as the Ioffe-Regel criterion
for localization [4]. To approach the Ioffe-Regel criterion, ls can be reduced by using scatterers
with a high refractive index, n, and a size such that the scattering cross-section is maximum.
Experimental difficulties in realizing a random medium where the optical absorption is low
enough and the light scattering is efficient enough to induce localization has been the reason
why, for a long time, only microwave localization was realized [5]. In this experiment the
absorption is large and, therefore, complicates the interpretation of the results. Recently, near
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infrared localization in GaAs powders was observed [6]. Nevertheless, the validity of these
measurements has been questioned by the possibility of absorption [6]. It is clear that new
experiments must be carried out in very strong scattering media to distinguish between the
effects of optical absorption and multiple scattering.

In this letter we present near infrared total transmission measurements through samples of
randomly packed silicon powders with particle sizes of the order the wavelength, λ. Silicon is a
semiconductor with the energy band gap at λgap = 1.1 µm. Therefore, the measurements were
performed at wavelengths, λ > λgap to minimize optical absorption. The high refractive index
of Si (n ' 3.5 in the near infrared) and the size of the Si particles constituting our samples
make the light-matter coupling very strong. We have performed measurements at different
wavelengths to systematically study the influence of the residual band gap absorption and the
scattering properties of the system.

The transition between extended and localized states occurs when kls ' 1. If kls À 1,
light propagates by performing a random walk. An enormous simplification in the description
of the transport of light can thus be made by neglecting all interference effects, and the
transport may be described by the diffusion equation [7]. As kls approaches the critical value,
the diffusion approximation may still be used with a renormalized diffusion constant. In the
localization regime the steady-state diffusion breaks down, which means that the diffusion
constant vanished. Defining the transport mean free path, l, as the distance traveled by the
light before its direction of propagation becomes randomized, isotropic scattering implies that l
equals ls. If we consider a medium translationally invariant in the x and y directions, the three-
dimensional diffusion equation reduces to the one-dimensional case in the non-translationally
invariant direction, i.e. the z-direction. This is valid for slab-geometry samples in which the
x and y dimensions are much larger than the z-dimension. Then, the energy density in the
stationary state inside the sample, ρ, is given by

∂2ρ

∂z2
− ρ

L2
a

= − 1
D

I0δ(z − l) , (1)

where La is the absorption length and D the diffusion constant. The diffusion constant is
given by D = vel/3, where ve is the energy transport velocity in the medium. In eq. (1), the
incoming energy flux at the boundary z = 0 has been replaced by a source of diffusive radiation
of strength, I0, equal to the incident flux and located at the plane z = l [8]. Simulations have
shown that eq. (1) is accurate to within about 1% for slabs sufficiently thick to be opaque [9].

The boundary conditions are determined considering that the diffuse fluxes going into the
sample at z = 0 and L are due to a finite reflectivity at the boundaries [10]. The boundary
conditions can be written as

ρ∓ z0i

∂ρ

∂z
= 0 , i =




1 if z = 0 (front sample surface) ,

2 if z = L (back sample surface) ,
(2)

where z0i
are given by z0i

= (2l/3)(1 + Ri)/(1−Ri), and Ri are the polarization and angular
averaged reflectivities of the boundaries. In the non-absorbing limit (La → ∞) eqs.(2) are
equivalent to extrapolate ρ to 0 at a distance z0i

outside the sample surface. Therefore z0i
are

called the extrapolation lengths. If Ri = 0 the diffusion approximation gives z0i
= 2l/3, very

close to the extrapolation length of 0.7104l given by the Milne solution [7].
The experimentally determined quantities in our experiments are the total transmitted

intensities. The total transmission, defined as the transmitted flux normalized by the incident
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Fig. 1. – Normalized histograms of the silicon particle radius considering all the particles as entities,
independently of whether they are part of a cluster (solid bars), and considering the clusters as single
particles (dashed bars). The solid and dotted lines are log-normal fits, from which the average particle
radius are calculated. The inset is a scanning electron microscope photograph of the Si particles.

Fig. 2. – Total transmission spectra normalized to their maximum transmissions. Solid line: Total
transmission spectrum of a layer of silicon powder of 57.8 µm thickness. Dotted line: Transmission
spectrum of a piece of intrinsic silicon of 1 mm thickness.

flux, is given by [11]

T =
−D(∇ρ)z=L

I0
=

sinh(l/La) + (z01/La) cosh(l/La)
(1 + z01z02/L2

a) sinh(L/La) + (1/La)(z01 + z02) cosh(L/La)
. (3)

If La À L, eq. (3) simplifies to

T =
l + z01

L + z01 + z02

, (4)

and if La ¿ L, it simplifies to

T =
2La(l + z01)

L2
a + (z01 + z02)La + z01z02

exp[−L/La] . (5)

In our experiments we measure the total transmission through samples consisting of 99.999%
pure Si particles. These powders are commercially available (Cerac S-1049) containing par-
ticles with sizes ranging from a few hundred nanometers to about 40 µm. To reduce the
polydispersity of the powders we suspended them in spectroscopic chloroform and we let the
Si particles sediment for 5 minutes. Only the particles that did not sediment were used in the
experiments. The polydispersity of the resulting powder was evaluated from scanning electron
microscope photographs like the one showed in the inset of fig. 1. As can be seen in the
photograph, the particles tend to aggregate into clusters. This makes the definition of particle
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radius difficult. We have evaluated the average particle radius with two different methods:
a) considering all the particles as entities, independently of if they are part of a cluster, and
b) considering the clusters as single particles. Defining the radius of a particle (or a cluster)
as half the maximum distance between parallel tangents to the particle surface, we computed
the radius of the particles. Figure 1 shows the normalized histograms of the particle radius.
The histograms can be fitted with a log-normal function, y = A exp[−ln2(r/rc)/2W 2]. The fit
to the histogram obtained with method a) gives A = 0.90, rc = 0.19 µm, W = 0.61, and it is
shown by the solid line in fig. 1, while method b) gives A = 0.86, rc = 0.44 µm, W = 0.55, and
it is shown by the dotted line in the same figure. This allows to calculate the average particle
radius and its standard deviation: a) ra = 0.33 ± 0.22 µm, and b) ra = 0.69 ± 0.41 µm. The
polydispersity defined as the ratio between the standard deviation and ra in percentage, is of
67% and 59%, respectively. In other words, our samples are constituted by highly polydisperse
scatterers.

We evaporated the chloroform and made slab geometry samples with the remaining powder
on CaF2 substrates with the form of a disk of 10 mm diameter. The thicknesses of the powder’s
layers were measured, with a resolution of 1 µm, with an optical microscope. We measured
the thickness of each sample at different points within its central region to be sure that the
powder layer was homogeneous. The resulting sample thicknesses are the average value of
these measurements and they range from 5.9± 2 µm to 57.8± 2 µm.

The total transmissions were measured with a Fourier Transform Infrared Spectrometer
(BioRad FTS-60A). A tungsten halogen lamp was the light source. Short wavelengths were
optically filtered and an aperture of 2 mm diameter was placed in front of the sample to measure
the transmission only through the region where the thickness was measured. The power of
light incident on the sample was ' 1 mW. The diffusely transmitted light was collected with a
BaSO4-coated integrating sphere and detected with a PbSe photoconductive cell. Before and
after measuring each sample, we measured the transmission through a clean CaF2 substrate,
which we used as reference to obtain the absolute value of the total transmission through the
Si layer and to check the stability of the set-up. Figure 2 shows a total transmission spectrum
of a sample of thickness L = 57.8 µm (solid line), and the transmission spectrum of a piece
of intrinsic Si of 1 mm thickness (dotted line) for comparison. Both measurements have been
normalized by their maximum transmissions.

By weighing the samples, we estimated the Si volume fraction to be φ ' 40%, which gives
rise to a Maxwell-Garnet effective refractive index of the samples of ne ' 1.5, nearly constant
for wavelengths between 1.4 µm and 2.5 µm. With the value of ne, the extrapolation lengths
of the Si-air and Si-CaF2 interfaces (z01 and z02 , respectively) can be calculated. Due to the
size and irregular shape of the Si particles, we may assume that the scattering is isotropic.
Then, since l = ls, the values of the extrapolation lengths are estimated to be z01 ' 2.42 ls
and z02 ' 0.78 ls; these are taken as fixed parameters in eq. (3) and eq. (4). Figure 3 shows
the total transmission as a function of the sample thickness for λ = 2.5 µm (squares) and
λ = 1.4 µm (circles). The error bars are mainly due to intensity fluctuations of the source
and to inhomogeneities in the sample thickness. The total transmission measurements can
be fitted excellently by using classical diffusion theory as it is shown by the solid and dotted
lines in fig. 3. The solid line in fig. 3 is a fit of eq. (4) to the λ = 2.5 µm measurements with
l = ls = 0.83± 0.08 µm. At this wavelength La À 57.8 µm, thus absorption can be neglected.
The dotted line is a fit of eq. (3) to the λ = 1.4 µm measurements with l = ls = 0.56±0.06 µm
and La = 8.8± 1 µm.

The wavelength dependence of La is plotted in fig. 4. The increase of absorption for
λ < 2.0 µm is due to strain in the Si lattice structure. The presence of strain gives rise to a
deformation of the potential which smears the valence and conduction bands. This results in an
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Fig. 3. – Total transmission through silicon powders as a function of the sample thickness. The
squares are the measurements for λ = 2.5 µm. The solid line is a fit using classical diffusion theory in
a non-absorbing medium, eq. (4), with z01 = 2.42 ls, z02 = 0.78 ls and ls = 0.83 µm. The circles are
the measurements for λ = 1.4 µm. At this wavelength absorption plays a role as can be seen from the
fit using classical diffusion theory in an absorbing medium (dotted line), eq. (3), with z01 = 2.42 ls,
z02 = 0.78 ls, ls = 0.56 µm and La = 8.8 µm.

Fig. 4. – Absorption length in silicon powders vs. the wavelength.

extension to longer wavelengths of the semiconductor band gap which decreases considerably
the absorption length at sub-band gap energies with respect to the strain-free material. We
have confirmed the presence of strain in our Si with X-ray diffraction measurements.

In fig. 5 ls is plotted as function of λ. It is remarkable that ls does not depend strongly on
λ, which can be attributed to the high polydispersity of the Si particles. We have used the
Energy Density Coherent Potential Approximation (EDCPA) [12,13] to calculate the transport
properties in a random media composed of Si spheres (φ = 40%) with a size distribution
given by a log-normal function (A = 0.86, rc = 0.44 µm, W = 0.55). The solid line in
fig. 5 is a convolution of the calculated ls for the specific spheres sizes with the probability
density function given above. As can be seen there is a good qualitative agreement between
the measured and the calculated ls. The quantitative difference can be attributed to several
factors: In the EDCPA calculation the scatterers are spheres, which clearly is not the case
in the Si samples. As pointed out before there is not an unambiguous way of measuring the
particle radius due to the aggregation of particles, we find better agreement between theory
and experiments when we consider the particle clusters as single scatterers. For comparison,
we plot in fig. 5 (dotted line) the calculated ls in a system composed of monodisperse Si spheres
of radius 0.44 µm and 40% volume fraction.

Using ls from the total transmission measurements, we can estimate the Ioffe-Regel param-
eter, kls = 2πnels/λ. In fig. 6 we have plotted the resulting values of kls as a function of λ.
Due to the slow change of ls with λ, kls remains nearly constant in the measured wavelength
interval. The line in fig. 6 is the result when using ls from the EDCPA calculation considering
the polydispersity in the particle sizes. Although the values of kls are very close to the critical
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Fig. 5. – Scattering mean free path, ls, of light measured in silicon powders vs. the wavelength. The Si
volume fraction has been estimated to be φ ' 40%. The solid line is a convolution of ls, calculated with
the energy density coherent potential approximation, for the specific spheres sizes with the probability
density function given by the dotted line in fig. 1 and φ = 40%. The dotted line is ls calculated for a
monodisperse system of Si spheres (radius=0.44 µm) and the same volume fraction.

Fig. 6. – Values of kls in silicon powders vs. the wavelength. The line is kls of a polydispere system
of Si spheres calculated with the Energy Density Coherent Potential Approximation.

value of kls ' 1, we can, nonetheless, describe our results using classical diffusion theory.
Wiersma et al. have reported the observation of Anderson localization of light in submicron
GaAs powders [6]. The refractive indices of GaAs and Si are almost equal and the volume
fraction and the size of the scatterers in the GaAs and Si samples are comparable. Therefore,
the high values kls and, consequently, the apparent absence of Anderson localization in the
GaAs samples is a surprising result that needs further theoretical attention. In ref. [12],
Kirchner et al. using the EDCPA found that the values of kls for the inverse structure of air
spheres in high dielectric materials is much lower that those for the direct structure of spheres
of high dielectric material in air. A possible explanation for the lower value of kls in the GaAs
samples could be a different connectivity of the particles. The shape of the GaAs particles [14]
is not as spherical as the shape of the Si particles. Therefore the contact between neighboring
particles could be better in the GaAs than in the Si samples. Then, the GaAs samples may
be better represented by an inverse structure while for the Si samples a description in terms
of a direct structure may be preferred.

In conclusion, we have studied the wavelength dependence of the scattering properties
and the absorption in very strong scattering and highly polydisperse media. From total
transmission measurements of light of wavelength between 1.4 µm and 2.5 µm through samples
consisting of very polydisperse Si particles, we obtain the scattering mean free path, ls, and
the absorption length, La. The scattering mean free path depends weakly on the wavelength
λ, giving rise to a nearly constant value of the Ioffe-Regel parameter kls for the range of λ
we have considered. This phenomenon can be understood in terms of the high polydispersity
of the Si particles. Our results can be fully described using classical diffusion theory. This is
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remarkable because recently Anderson localization of light has been reported in a very similar
scattering medium (gallium arsenide powders) [6]. A possible difference between the samples
of ref. [6] and the Si samples used in this work could be the connectivity of the particles.
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